Logo

مجلة التطوير العلمي للدراسات والبحوث amany

Logo
العودة إلى المقالات

AInstein numerical Einstein metrics via machine learning

نوع الإرسال:دراسة حالة

المؤلفون

1 University of Leeds, UK, leeds, electrical engineering

DOIمعرّف الكائن الرقمي (DOI)

10.9876/588-e7a948

المختصر

In this paper, we propose a novel semi-supervised machine learning approach2 to approximate general Einstein metrics on a broad class of manifolds. We demonstrate its potential by focusing on spheres in various dimensions, with the aim of shedding light on longstanding open problems, providing new perspectives for analysis, and stimulating further research into the numerical and analytical aspects of Einstein geometry. After this successful validation of our method, we aim at applying to other settings with larger relevance in theoretical physics, by looking for black hole solutions and moving to Lorentzian signature.

المواضيع الرئيسية

Computer Science

الكلمات المفتاحية

telecom
4G
5G

رخصة

Journal License

هذا العمل مرخص بموجب رخصة Attribution 4.0 International

issue-coversheet

V3, 15/11

منشور

صفحات 40 - 50

الملفات

PDF

رؤى المقالة

عدد مرات مشاهدة المقال

45

تحميلات PDF

0

المراجع

[1]Besse A L 1987 Einstein Manifolds (Springer)

[2]Berger M 2003 A Panoramic View of Riemannian Geometry (Springer)

[3]Yau S-T 1978 On the Ricci curvature of a compact kahler manifold and the complex monge-ampere equation, I* Commun. Pure Appl. Math. 31 339–411

[4]Boyer C P, Galicki K, Kollar J and Thomas E 2003 Einstein metrics on exotic spheres in dimensions 7, 11 and 15 (arXiv:0311293)